Visual pathway abnormalities in dementia with Lewy bodies: an Optical Coherence Tomography (OCT) and 18F-FDG-PET/MRI study

F. FRAGIACOMO¹, G. ZORZI¹, S. MIANTE¹, M. PENGO¹, C. BUSSE¹, P. GALLO¹, D. CECCHIN², A. CAGNIN¹

¹Department of Neurosciences - University of Padova - Padova

²Nuclear Medicine Unit - Azienda Ospedaliera di Padova - Padova

Background

The visual system may be involved in several core features of dementia with Lewy bodies (DLB), however, very few data on retinal and visual system abnormalities are available. Aim: To identify structural and metabolic features alongside the visual pathway (i.e. from retina to primary/secondary visual cortex) that may be specific of DLB.

Aim

To identify structural and metabolic features alongside the visual pathway (i.e. from retina to primary/secondary visual cortex) that may be specific of DLB.

Methods

<u>Study 1</u>: 35 DLB patients and 30 healthy subjects (HS) underwent a Spectral Domain retinal Optical Coherence Tomography (OCT) scan; peripapillary RNFL (pRNFL) and macular layers thicknesses and volumes were compared. Exclusion criteria for all subjects were presence of retinopathy, severe glaucoma and age-related macular degeneration. DLB patients underwent clinical interview, neurological and neuropsychological evaluations.

<u>Study 2</u>: 31 DLB patients and 18 control subjects underwent 18F-FDG-PET/MRI scan. Cortical thickness (Cth), subcortical volumes and 18F-FDG SUVr of visual system structures were compared.

<u>Study 3</u>: data from 16 DLB patients with both OCT and 18F-FDG-PET/MRI were combined to identify associations between retinal thickness and brain metabolism of the visual pathway.

Results

<u>Study 1</u>: pRNFL thickness was not significantly different in DLB patients and HS; as for macular layers, parafoveal ganglion cells and inner plexiform layer (pfGCIPL) was significantly thinner in DLB patients Fig. 1: Comparison of pRNFL values between DLB patients and healthy subjects

(p=0,03), mostly in nasal and temporal quadrant (p=0,02), as well as the inner nuclear layer (INL) inner temporal quadrant (p=0,003). The thickness of pRNFL temporo-superior sector was associated with disease duration (Rho=-0,4, p=0,01), while visuo-spatial abilities were associated with the thickness of pRNFL temporal sector and papillomacular bundle (QPST "opening/closure" item: Rho=0,5, p=0,004 and Rho=0,4, p=0,01, respectively; QPST "closing in" item: Rho=0,5, p=0,002 and Rho=0,5, p=0,001, respectively).

<u>Study 2</u>: DLB patients had significantly thinner Cth in secondary visual areas, i.e. right precuneus (p=0,003) and bilateral fusiform gyrus (p=0,02, both); and lower SUVr in parieto-temporo-occipital regions.

<u>Study 3</u>: pfGCIPL thickness and volumes of macular GCIPL (GCIPLv), RNFL (RNFLv) and INL (INLv) had a negative association with level of glucose metabolism in the fusiform gyrus (FG) and pulvinar (FG: pfGCIPL thickness r=-0,6, p=0,03; GCIPLv r=-0,6, p=0,03; RNFLv r=-0,7, p=0,003. Pulvinar: INLv r=-0,6, p=0,01; GCIPLv r=-0,5, p=0,04).

Conclusion

in DLB patients parafoveal macular GCIPL and Cth in secondary visual areas are thinner than in control subjects and glucose metabolism lower in temporo-parieto-occipital cortical regions. Thicknesses of macular layers in DLB group were negatively associated to secondary visual cortex metabolism, suggesting a relative preservation of synaptic activity in secondary visual cortex in response to degraded afferent visual stimuli.

 \sim

